常用電磁鐵的線圈匝數(shù)依賴于電磁鐵的鐵芯大小,電源工作電壓(還有電源的類別直流或交流),漆包線的電阻,在設(shè)計好的電磁鐵上,提高線圈匝數(shù)或者會提高某些電磁力,但很快會被減少的電流和飽和的鐵芯所限制。電磁鐵的電磁線圈匝數(shù)和線圈中流通的電流量越多越大,則所轉(zhuǎn)化成的磁通量也越多,磁性越強,但到達(dá)一定的匝數(shù)和電流量,磁通量呈飽和,即如再提高線圈匝數(shù)或電流量,磁性抗壓強度不會再提高。
內(nèi)部含有鐵芯的、運用通有電流量的線圈使其像磁石相同具備磁性的設(shè)備稱為電磁鐵。一般做成條型或蹄形。鐵芯得用非常容易磁化,又非常容易消退磁性的軟鐵或硅鋼來制作。那樣的電磁鐵在有電時會磁性,關(guān)閉電源后就隨著消退。電磁鐵在生活中有極為普遍的運用。電磁鐵的創(chuàng)造發(fā)明也使發(fā)電機組的輸出功率獲得了挺大的提高。
如在通電螺線管內(nèi)部添加鐵芯后,鐵芯被通電螺線管的電磁場磁化。磁化后的鐵芯也變?yōu)榱?span>1個磁體,那樣因為2個電磁場相互之間疊加,進而使螺線管的磁性大大的提高。以便使電磁鐵的磁性更強,一般將鐵芯做成蹄形。但是特別注意蹄形鐵芯上線圈的繞向相反,一面順時針方向,另一側(cè)必需逆時針。要是繞向相同,兩線圈對鐵芯的磁化功效將互相抵消,使鐵芯看不出磁性。另外,電磁鐵的鐵芯用軟鐵制作,而不能用鋼制做。不然鋼如果被磁化后,將始終保持磁性而不能去磁,則其磁性的高低就不能用電流量的大小來操縱,而喪失電磁鐵應(yīng)有的優(yōu)勢。
電氣設(shè)備運用的磁性材料主要有鐵、鎳、鈷以及合金。他們具備下述磁性能。
(1)高導(dǎo)磁性
磁性材料的磁導(dǎo)率很高,其相對磁導(dǎo)率μ,可達(dá)到好幾百以至十多萬。因此可以被外磁場強烈磁化(呈現(xiàn)磁性)。依據(jù)磁性化學(xué)物質(zhì)的這種特性,在電動機、變電器等電器設(shè)備的勵磁繞組放入人由磁性材料組成的鐵芯,就能夠使在勵磁線圈匝數(shù)及勵磁電流一定的狀況下,得到較強的磁場。選用高品質(zhì)磁性材料,能夠使相同容積的電動機重量減輕,體積減小。
(2)磁飽和性
磁性物質(zhì)盡管能被外電磁場明顯磁化,可是磁化功效不容易無限地提高。這由于磁性物質(zhì)存有著磁飽和性,即磁性物質(zhì)在磁化全過程中,當(dāng)磁場強度H提高到一定值后,它的磁感應(yīng)強度B不要隨H的提高而提高。
敘述磁化全過程中磁性材料的磁感應(yīng)強度B隨磁場強度H轉(zhuǎn)變的曲線圖稱磁化曲線圖,即B=,(H)曲線圖,如圖所示4-3如圖所示。由曲線圖不難看出,磁性物質(zhì)的B與H不正比,尤其曲線圖的b點之后,曲線圖越來越平整,說明B大部分不再隨H提高而提高,超過了磁飽和狀態(tài)。因為磁通 與磁密B正比,造成磁通的勵磁電流J與磁場強度H正比,因此當(dāng)電磁場的磁介質(zhì)是磁性材料時,
與I不是成正比的。
依據(jù) 關(guān)系式推測,因為B與H不成正比,因此磁性化學(xué)物質(zhì)的磁導(dǎo)率μ不是常數(shù),如圖4-4所示。
(3)磁滯性
當(dāng)磁性材料處在交變磁化情況時,磁性材料展現(xiàn)出磁滯性,即磁理性強度落后于磁場強度變化。圖4-5所示為磁性材料在交變磁化時B隨H的轉(zhuǎn)變曲線。由圖可見,B和H是順著合閉曲線圖轉(zhuǎn)變的。在磁化過程中,當(dāng)H等于零時,B不等于零,而o稱之為剩磁感應(yīng)強度。為使B等零,要更改磁場強度H的方位來開展反方向磁化。當(dāng)H相當(dāng)于o時,稱為矯頑磁場強度(或稱矯頑磁力)。
不一樣的磁性材料,他們的磁性能是不一樣的,按磁性能可分成兩大類:軟磁材料和硬磁材料。
軟磁材料具備較小的矯頑磁力。運用較多的軟磁材料有硅鋼片、鑄鋼件、坡莫合金、軟磁鐵氧體等。這種磁性材料通常用以制造電機、變壓器等電氣設(shè)備的鐵芯。
硬磁材料具備很大的矯頑磁力。運用較多的有碳鋼、鋁鎳鈷合金、硬磁鐵氧體等磁性材料。這種磁性材料通常用以制造永久磁鐵。
|